Wireless on Asus X200M netbooks: Ubuntu 14.04 LTS

April 4th, 2016 Comments off

We resently bought several Asus X200 series netbooks for our faculty members. The main attraction of this  cute  netbook is its  light weight and a built in HDMI port. We plan to use them extensively for   content delivery in class rooms. These  machines are really cheap, costing around Rs17000 ( around $260).  The base model comes with Intel® Celeron® Dual-Core ~ 2.58 GHz Processor and 2GB ram, DOS operating system. It has an 11.6 inch LED display.

Our idea was to put   ubuntu 14.04 and deploy the machines. The machine has an ethernet port and wifi port.  Installation of Ubuntu 15.10 was a smooth affair.  Unfortunately, the broadcom wifi interface did  not work out of the box. Here is what I did to fix the issue.

  1. Find out which wifi chip is used.

$lspci broadcom wifi lspci

The wifi chip is  Broadcom Corporation BCM43142. You have to download and compile the kernel module for this chip.

2) Make sure that the machine is connected to internet and the apt sources are properly set up

3) Update  the machine

$ sudo apt-get update

4) Finally instal the  bcmwl driver.

$ sudo apt-get install linux-headers-`uname -r` dkms build-essential bcmwl-kernel-source

This will downlad necessary driver  your wifi will be up and running. The above line installs dynamic kernel module support  and compiles the broadcom wireless driver.

Categories: Computers, Gnu/Linux Tags:

A simple Si5351A breakout board

February 19th, 2015 4 comments

I have been toying with the idea of making a Si5351A breakout board ever since I saw the chip details on Silicon labs web site. It seems  SI5351A is an ideal choice for Variable Frequency Oscillator (VFO) for a homebrewed radio.  The SI5351 is an i2c programmable any frequency clock generator. The chip can  generates up to 8 non-integer-related  frequencies from 8 kHz to 160 MHz depending on the model. There are 3 different variations of the chip currently available.  For the home brewer SI 5351A looks promising as it is available in a 10 pin MSOP package.

For the ham radio home brewer, such a chip which can be programmed over many ham bands offer  numerous possibilities.   The most obvious choice would be  as a VFO. Currently, the analog devices DDS chips are ruling the market. Compared to them the Silicon Labs chips are cheaper and less cumbersome to handle. I am yet to see the noise performance of these two chips compared.

In fact, there are a couple of commercial Si5351A breakout boards   targeted at the  home brewer. They cost around 10$. But the chip itself cost only 1.33$  on the Silicon Labs website and you need only a few  additional components to complete the board. The total cost need not be more than 3 $.  Along with a cheap Arduino clone, Si5351A gives you lot of flexibility. An added advantages is that the SI5351A  has three independent programmable clock generators. You can combine  the  VFO and   BFO  into a single chip.

My idea was to build a single side PCB so that any one can build one via toner transfer. Last week,  I had a long  chat  with my friend and colleague Amal Dev  about designing  a simple board.  The board routing was done by Amal Dev on eagle,  We have  designed an experimental single sided board and it may not be conforming to RF design principles always.

For the interested home brewer a  toner transferable image is  here.    You can  buy the  SI5351 from RS components  or from Mouser.  The board is to be powered from a 5v source.  The SI5351A needs 3.3v for its operation. The LM1117 is used for generating this.  Note that the LM1117  is SMD and is soldered on the copper side.  The two MOSFETs ( BS170)   are used to convert the I2C levels from 5v to 3.3v.  Check the pin outs before you solder.  The board can be directly powered from an arduino.

For programming the board you can try the example code from Hansummers.  Alternately you can try the excellent si5351 arduino library.  Tom Hall AK2B has some  sample sketches using this library. Please note that I2C address of the chip may be different from those found in the above code. Please use an I2C scanner  to find out your chips address and then modify your code accordingly.

si5351 breakout board

Schematic of si5351 breakout board. Q1 and Q2 are bs170. The regulator is a smd lm1117




Si 5351 board.


Component Placement on the Si5351 break out board.

The pin out of the SI5351A is shown below.


A special thanks to Amogh Desai who tested the first version  and reported couple of errors.  Further comments and error reports are welcome.

Categories: Ham Radio Tags:

Plug and Play DDS VFO with arduino

December 7th, 2013 Comments off

I have been trying to program  cheap Chinese DDS modules recently.   I wanted to  add a DDS VFO to one of my bitx rigs. These modules are available  at $4.5 from aliexpress. They claim that it can work up to 40Mhz.

I used an arduino Uno along with a rotary encoder for  controlling the module. The DDS module pin out is shown below.



The connections to arduino and rotary encoder is  shown below.





You can download the code hosted on github from  here. 

The code is for 40m VFO    with IF of 9Mhz.  You can easily modify it for other  bands and IFs. Additional functions can be programmed easily.

The DDS modules  are available on line form from many sources. The rotary encoder can be obtained from element14.




July 2nd, 2011 Comments off

by  R. Jayaraman (VU2JN)

This article is a sequel to the article “A Compact ATU handles 100 watts” that was published online in March 2011. It describes a Norcal-type Antenna Tuning Unit with an in-line Stockton-bridge-type Reflected-power Indicator that I built recently (April 2011). This ATU is also capable of handling the full output of a 100-watt HF transceiver.

The ATU circuit is that of the well-known Norcal BLT ATU, with minor modifications. A Reflectometer, ie. reflected-power indicator, forms part of this ATU and makes it self-contained, obviating the need for a SWR bridge. It is based on the Stockton SWR bridge, an interesting bridge circuit using 2 toroidal RF pick-up coils. This circuit deserves to be used more commonly by hams. For those who are interested, additional details of the Norcal BLT ATU and the Stockton SWR Bridge are available on the internet.

Fig.1. Circuit diagram of the ATU with Reflectometer

The toroidal coil of the Norcal ATU has been replaced with an open air-core coil since this unit is meant as a prototype suitable for duplication by budding hams who might find it difficult to procure large-sized toroids. The two BC-type 330 pF air-variable tuning condensers were salvaged from old discarded radios. They were tested at 230 V AC to make sure that there was no arcing. If air-variable tuning condensers are not available, polyster-variable tuning condensers may be used, but the maximum RF power may have to be restricted to about 50 W.

The entire ATU-cum-Reflectometer is assembled on a bakelite sheet 6.25″ by 3.5″ that was available with me. Hams wishing to build this unit are advised to use a slightly broader sheet. The main coil is wound with 16-gauge copper wire on a short length of 1.25″ dia. plastic water-pipe tubing. The coil has 16 turns spaced to a length of 1.5″ with taps at 8 and 14 turns. The centre of the winding is the earth point. In the Norcal ATU, the RF output is taken through a 6-turn link winding, but in this unit, the messy link is dispensed with and the output is taken from a tap 6 turns from the earth point. Even with this simplification, the ATU works satisfactorily.
vu2 JN ATU
Fig.2. Photo of the ATU with Reflectometer

The open coil will produce a weak RF field in the shack. If the builder wishes so, the unit can be put in an aluminium box, but then (1) leave a minimum space of one diameter around the coil, (2) since the body of the tuning condensers is not at ground potential, leave a small gap between the shafts of the condensers and the front panel, and (3) use knobs with pointers for the tuning condensers (to indicate their position).

The toroids are 0.38 in. o.d. through which runs a short length of RG-174U coax. The centre conductor of the coax forms the primary of the winding, and the outer braid is used as a Faraday shield by grounding at one end only. The secondary windings of the toroidal pick-up coils consist of 18 turns of 24-gauge copper wire. The 1N34A rectifier circuit is used only on the reflected-power side. If the builder wishes so, this indicator can be easily upgraded to a full-fledged SWR bridge.

The visual indicator is a robust disposal-type 500 uA meter that was available in my junk-box. The resistor that comes in series with the meter should be not less than 5 K, and is selected so that there is a substantial reflected-power indication with a mismatched antenna. Since modern transceivers have built-in SWR protection circuitry, there is some sort of automatic control on the reflected power reading. Therefore no sensitivity control is needed.

With the transceiver and antenna connected to the unit, RF power is applied, and the two condensers are adjusted for zero reflected-power indication. Since no reduction drives are used, the condensers need to be tuned very carefully. A very slight hand-capacitance effect is present, but is not bothersome. The ATU-cum-Reflectometer is performing very well, and is able to tune my coax-fed 40-metre dipole on 80 metres, and bring down the reflected power to zero. To sum up, this is a simple and satisfying homebrew project.

PS: The photo reveals the need for some finishing touches on coil L1 that were initially postponed and then forgotten!

— VU2JN.

Note from VU2SWX : OM  Jayaraman has permitted me to  play with tis cute tuner . The unit is currently in my shack.

Categories: Computers Tags:

A compact ATU handles 100 watts

March 26th, 2011 5 comments

by R. Jayaraman (VU2JN)

This note describes a compact Antenna Tuning Unit (ATU) that I assembled recently. It is capable of handling the full 100-watt output of my FT-840 transceiver.

For efficient radiation of the RF power otput of a HF transmitter, its output impedance, the characteristic impedance of the transmission line (usually coaxial cable), and the radiation resistance of the antenna should all be the same. Over the years, this standard impedance has evolved as 50 ohms for communication equipment — applicable to RF transmitters, receivers, coaxial cables and even the Standing Wave Ratio bridge (SWR bridge). The departure of the impedance seen at the transmitter output from this standard value is shown by the SWR bridge. A SWR of 1.0 indicates an impedance of 50 ohms resistive.

An antenna, when cut for the band of operation, is said to be a resonant antenna. At the antenna end of the transmission line, the RF impedance of a resonant antenna is a pure resistance known as its ‘radiation resistance’ whose value, being different for different types of antennas, is not always close to 50 ohms. Moreover, when it is not 50 ohms, the coaxial cable might transform this impedance to some other value at its transceiver end. So, even a resonant antenna might be seen by the transceiver as having a SWR higher than 1.0. Because of the difficulty of putting up an antenna for each band of operation, we are often constrained to operate using a non-resonant antenna, which appears as a complex impedance made up of its ‘radiation resistance’ plus a significant capacitive or inductive reactance. Both these components vary with the frequency of operation.

Present-day solid-state transceivers, which have protective circuits that sense the SWR seen by the rig, would not load antennas that show a high SWR. Moreover, these transceivers make use of a bank of bandpass filters near the antenna terminals that would provide the required bandpass characteristic only when seeing a 50 ohms impedance. Therefore, these rigs need an ATU to work with antennas that show even a moderately high SWR exceeding 1.3.

In many situations, we rely on an ATU to enable us to operate with a ‘short antenna’, i.e. one whose resonant frequency is higher than the frequency of operation. A short antenna appears to the transmitter as a complex impedance in which the resistive component or ‘radiation resistance’ is much lower than that of a resonant antenna, whereas the capacitive reactance is substantial and dominates over the resistive component. It is the job of the ATU to transform the complex antenna impedance to 50 ohms resistive as seen by the transceiver. However, when we operate with a short antenna in this manner, a part of the transmitted power is wasted (1) as ‘line radiation’ from the coaxial line, and (2) as increased ‘resistive losses’ in the coax and the antenna due to the higher RF currents needed to radiate power from the lower ‘radiation resistance’ of the short antenna. The ‘resistive losses’ occur due to real resistance of the conductors at RF (which again is different from the resistance at DC), whereas the ‘radiation resistance’ of the antenna is a virtual resistance which can be calculated theoretically for any antenna (and frequency of operation), and which governs the RF power radiated by the antenna.

Long ago, when I commissioned my ham radio equipment, I was keen on building a good ATU. The general belief then was that a Rotary inductor was an essential component of the ATU. Since I couldn’t locate either a rotary inductor or a 12-position antenna switch for use with a tapped inductor, my ATU project did not take off and, after a while, I lost interest in it. I was QRV only on the ham bands for which I had antennas.

About a year ago, my friend Salim, VU2LID / N8LI, who works in USA and visits India often, suggested that I try operating on 80 metres, and loaned me his SPC Transmatch, which enabled me to tune my 40-metre dipole on 80 metres. Because of the success of the 80-metre operation, my interest in ATU’s got revived. The elusive 25 uH rotary inductor was also finally located. However, the cumbersome size of the rotary inductor and its dial drive put me off, and I started surfing the internet for circuits of compact ATU’s that didn’t need a rotary inductor.

Fig.1: Z-match ATU

Fig.2: Fri-match ATU

I was able to locate some articles on the Z-match ATU authored by G3VGR, VK5BR and others. Their circuit used a tapped coil (toroidal or air-core) with a link feeding the antenna (Fig.1). I tried this circuit and found that its tuning range was very limited, necessitating tricky adjustment of the total turns and taps of the coil. Also, I didn’t like the link coupling for RF power transfer. So I continued my search, and finally located the article by XS4ALL on the elegant Fri-match ATU, originally developed by PA0FRI. Fig.2 shows the circuit diagram of the Fri-match ATU. This ATU uses a single tapped coil (toroidal or air-core), which couples directly to the antenna. An interesting feature of the Fri-match ATU is that the input and output of the ATU can be interchanged. The conjugate configuration is said to work better in some situations.


Fig.3: The Condenser test setup


A brief discussion on the use of BC-type air-variable tuning condensers for RF power transfer would be appropriate here. In many published articles, the suggested plate spacing for the variable condenser of a 1 kW ATU is around 2 mm. For RF power levels of upto about 200 watts, such wide-spaced condensers are unnecessary, especially when low-impedance antennas are used. I always test BC-type variable condensers before using them in my ham projects, by connecting a 230-volt 10-watt bulb in series with the variable condenser, then applying 230-volt AC to the combination, and turning the condenser knob to and fro to check for arcing. Fig.3 shows the test setup. A good-quality 2-gang 500-pF BC-type air-variable tuning condenser (Polar, Sanyo etc.) would generally pass this test without any arcing. This means the condenser can handle 230 volts RF, which appears to be quite adequate. In fact, it is not the plate spacing of the condenser that appears to be critical here, but rather the RF current-carrying capacity of the wiper of the condenser. At any rate, a good BC-type air-variable condenser, tested before use and having a clean wiper, should be quite adequate for RF power levels of upto 200 watts.

I had with me 2 Nos. of 1.56 in. o.d. toroids of unknown permeability characteristics, which were found to be good for HF. I stacked the 2 toroids, wound teflon tape over them, and then wound the coil using 14-gauge enamelled copper wire. Winding the toroidal coil was a real pain. Silver-plated multi-strand soft copper wire with teflon insulation would have made the job easier, but it is not available here. The number of turns needed for the toroidal coil depends on the core area and permeability of the core. Suggested number of turns is 15, 20 or 25. I used 20 (n) turns with taps at 4 (n/5), 8 (2n/5) and 12 (3n/5) turns.


Fig.4: The Fri-match ATU built by me



To make a long story short, my Fri-match ATU was completed in March 2011, nearly half a century after I first thought of building an ATU! Fig. 4 shows a photo of this ATU. It has just 2 controls, and no rotary inductor. It outperforms the conventional Z-match with regard to ease of tuning and tuning range, and is almost as good as the SPC Transmatch. And interestingly, so long as the Fri-match ATU is able to match an antenna within its tuning range, it is able to bring down the SWR to exactly 1.0. This is something that I had not expected from a 2-knob ATU that is free of the burden of a variable inductor!

No reduction drives are used in this ATU. Though the tuning of the condensers is very sharp, it is manageable, even for a person aged 75 years! An analog SWR bridge is needed for tune-up. A point to be kept in mind is that, if one of the condensers is very much off-tune, tuning the other condenser would not produce any dip in the reflected power. Therefore, in the absence of calibrated dials, visual monitoring of the condensers is necessary. The body of one of the condensers has a RF potential but, since it is tied to the transmitter output, there is no hand-capacitance effect.

The Fri-match ATU sits to my right near the front edge of the operating table, not far away from the FT-840 transceiver. From the antenna switch, a 70-ft. length of RG-223 coax feeds a 40-metre dipole antenna, and a 50-ft. length of RG-213 coax feeds a HY-GAIN 12AVQ 3-band ground-plane antenna. The ATU enables me to use the 40-metre dipole on 20, 40 and 80 metres, and the 12AVQ ground-plane on 10, 15, 20 and 40 metres — all with a SWR of 1.0 as seen by the transceiver. So much so, the ATU is useful even when a resonant antenna is used for the band of operation. On 20 metres and the higher bands, I normally use the 12AVQ ground-plane. The only time I operate with a non-resonant antenna is when I use my 40-metre dipole on 80 metres. Signal reports then indicate that I am roughly 1 S-point weaker than similar stations using a 80-metre dipole. That’s not bad, and I am quite happy with the performance of the ATU.

I recommend this ATU to all hams. When an ATU is available, we can fabricate a dipole, ground-plane or any other antenna simply to the dimensions suggested by theory, and dispense with the trimming of the antenna. In many situations, trimming of the antenna to lower the SWR is unscientific, because the problem is not in the antenna, but elsewhere! It is better to rely on the ATU to take care of the fine tuning of a resonant antenna.

— VU2JN.

(  OM Jayaraman VU2JN has kindly  permitted me to put this note on this blog. Many thanks  to him for sharing his experiences. VU2SWX. )

Categories: Ham Radio Tags: